Proposal of Perfect Tracking and Perfect Disturbance Rejection Control by Multirate Sampling and Applications to Hard Disk Drive Control

Hiroshi Fujimoto Yoichi Hori Takashi Yamaguchi
Dept. Electrical Eng., Univ. of Tokyo 2-11-16 Yayoi, Bunkyo, Tokyo, 113-8656 Japan
{fuji, hori}@hori.t.u-tokyo.ac.jp

Abstract
In this paper, new multirate two-degree-of-freedom controllers are proposed for digital control systems, where it is restricted that the speed of the A/D converters are slower than that of the D/A converters. The proposed feedforward controller assures the perfect tracking at M inter-sampling points. Moreover, the proposed feedback controller assures the perfect disturbance rejection at M inter-sample points in the steady state. Illustrative examples of position control for hard disk drive are presented, and the advantages of this approach are demonstrated.

1 Introduction
A digital control system usually has two samplers for the reference signal r(t) and the output y(t), and one holder on the input u(t) as shown in Fig. 1. Therefore, there exist three time periods T_r, T_y, and T_u which represent the period of r(t), y(t), and u(t), respectively. The input period T_u is generally decided by the speed of the actuator, D/A converter, or the calculation on the CPU. Moreover, the output period T_y is also determined by the speed of the sensor or the A/D converter.

In this paper, the digital control systems which have hardware restrictions of T_u < T_y are assumed, and novel design methods of multirate two-degree-of-freedom (TDOF) controllers are proposed, which achieve "the perfect tracking" and "the perfect disturbance rejection" at M inter-sample points of T_y. The restriction of T_u < T_y may be general because D/A converters are usually faster than the A/D converters. Especially, head-positioning systems of the hard disk drive (HDD) or the visual servo systems of robot manipulator belong to this category, because the sampling rates of the measurement are relatively slow.

[1, 2, 3, 4] have attempted to use multirate sampling controllers to HDD systems. This paper apply the proposed perfect tracking feedforward controller to the track-seeking mode of HDD, and the proposed perfect disturbance rejection controller is also applied to the track-following mode.

\[r(t) \quad r[i] \quad u[i] \quad y[i] \]

\[r(t) \xrightarrow{S_M(T_r)} C_1[z] \xrightarrow{H_M(T_y)} P_x(s) \xrightarrow{S_M(T_y)} y[i] \]

Figure 1: Two-degree-of-freedom control system.

Recently, the modern sampled-data control theories have developed, which can optimize the inter-sample response [5]. In contrast, the proposed methods make simple and practical approaches to grantee the smooth inter-sample responses by controlling all of the plant states (e.g. position and velocity) at M inter-sample points.

2 Design of the multirate TDOF controller
In this section, new multirate TDOF controllers are proposed. For the restriction of T_u < T_y, the flame period T_f is defined as T_f = T_y, and the dynamics of the controller is described by T_f.

In this paper, the integer M is selected so as to \[M \triangleq \frac{N}{n} \] becomes an integer, where \(N \) is the input multiplicity and \(n \) is the plant order. As shown in Fig. 2, the plant input is changed N times during T_y (= T_f), and the perfect tracking and the perfect disturbance rejection of the plant state are guaranteed M times during T_y.

For simplification, the continuous-time plant is assumed to be SISO system in this paper. The proposed methods, however, can be extended to deal with the MIMO system by the same way as [6].

2.1 Plant Discretization by Multirate Sampling
Consider the continuous-time plant described by

\[x(t) = A_c x(t) + b_c u(t), \quad y(t) = c_c x(t). \]
The discrete-time plant discretized by the multirate sampling control (Fig. 2) becomes

\[
x[i + 1] = A x[i] + B u[i], \quad y[i] = C x[i]
\]

where \(x[i] = x(iT) \), and where matrices \(A, B, C \) and vectors \(u \) are given by

\[
\begin{bmatrix}
A & B \\
C & 0
\end{bmatrix} \triangleq \begin{bmatrix}
1 & e^{A c T_f} & 0 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & 0
\end{bmatrix},
\]

\[
b_j \triangleq \int_{(j-1)T_f}^{(j)T_f} e^{A c T_f} b_d d\tau, \quad u \triangleq [u_1, \ldots, u_N]^T,
\]

\[
0 = \mu_0 < \mu_1 < \mu_2 < \ldots < \mu_N = 1.
\]

The inter-sample plant state at \(t = (i + \nu_k)T_f \) is represented by

\[
\tilde{x}[i] = \tilde{A} x[i] + \tilde{B} u[i],
\]

where \(\tilde{A} = A_{v \times T_f} e^{A c T_f} b_d T_f \) and \(\tilde{B} = A_{v \times T_f} b_d T_f \).

The control law of Fig. 1 is described by

\[
u = C_1 r + C_2 y = F \tilde{x} + Q \epsilon y + K r
\]

where \(K, Q \in RH_\infty \) are free parameters [14]. Therefore, Fig. 1 can be transferred to Fig. 3. In the figure, \(T_\alpha, S \), and the thick lines represent the multirate hold, the sampler, and the multirate signals, respectively. In this paper, \(K \) becomes a constant matrix.

Because the estimation errors of the observer become zero (\(\tilde{x} = x, \epsilon_y = 0 \)) for the nominal plant, from (6) and (12), this system is represented by

\[
\tilde{x}[i] = (\tilde{A} + \tilde{B} F) x[i] + \tilde{B} K r[i]
\]

[15] proved that the matrix \(\tilde{B} \) is non-singular and that the coefficient matrices of (13) can be arbitrary assigned by \(F \) and \(K \). In this paper, the parameters \(F, K \) can be selected so that following equations are satisfied

\[
\tilde{A} + \tilde{B} F = O, \quad \tilde{B} K = I.
\]

From (14), \(F, K \) are given by

\[
F = -\tilde{B}^{-1} \tilde{A}, \quad K - \tilde{B}^{-1}
\]

Therefore, (13) is described by \(\tilde{x}[i] = r[i] \). Utilizing the inter-sample desired state \(\tilde{x}^*[i] \), if the reference input is set to \(r[i] = \tilde{x}^*[i] \), we find the perfect tracking \(\tilde{x}[i] = \tilde{x}^*[i] \) can be achieved at every sampling point \(T_f \).

Because \(C_1[z] \) of (11) can be transferred to (16), \(C_1[z] \) is given by (Fig. 4)

\[
C_1[z] = (M - C_2 N) K,
\]
Figure 4: Implementation of the proposed controller.

\[
M = \begin{bmatrix}
A + BF & B \\
F & I
\end{bmatrix} = I + z^{-1}FB,
\]

\[
N = \begin{bmatrix}
A + BF & B \\
C & O
\end{bmatrix} = z^{-1}CB,
\]

where \(M, N \) are the right coprime factorization of the plant \(P(z) = NM^{-1} \).

2.3 Design of the perfect disturbance rejection controller

In this section, a new multirate feedback controller is proposed based on the state space design of the disturbance observer.

Consider the continuous-time plant model described by

\[
\dot{x}(t) = Ax(t) + b u(t) + d(t) \quad \tag{18}
\]

\[
y(t) = c x(t), \quad \tag{19}
\]

where \(d(t) \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

Consider the continuous-time plant model described by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]

For example, the step type disturbance can be modeled by \(A_c = 0 \), \(b_c = 1 \). The continuous-time augmented system consisting of (18) and (20) is represented by

\[
\dot{x}(t) = Ax(t) + b_c u(t) + b_d d(t) \quad \tag{21}
\]

\[
y(t) = c x(t), \quad \tag{22}
\]

where \(b_d \) is the disturbance input. Let the disturbance model be

\[
\dot{x}_d(t) = A_c x_d(t) + b_c u(t) \quad \tag{20}
\]
Substituting (24) for (26), the feedback type controller is obtained by

$$\begin{bmatrix}
\dot{v}[i + 1] \\
\dot{u}[i]
\end{bmatrix} =
\begin{bmatrix}
\dot{A} + JF\dot{C} & b + JF\dot{d} \\
FC & \dot{F}d
\end{bmatrix}
\begin{bmatrix}
v[i] \\
u[i]
\end{bmatrix}. \tag{33}
$$

F_p design by the inter-sample observer: In this section, the inter-sample observer is introduced, and the state-feedback control input $F_p\hat{x}_p[i]$ in (26) is decided by the proposed observer. From the estimated state (25) on the sampling points, the inter-sample plant state is estimated by

$$\hat{x}_p[i] = \hat{A}_p\hat{x}_p[i] + \hat{B}_p u[i], \tag{34}$$

where $\hat{x}_p[i] = [\hat{x}_p[i + \mu_0], \ldots, \hat{x}_p[i + \mu_{N-1}]^T$, and \hat{A}_p, \hat{B}_p are calculated by (6). Utilizing the inter-sample estimated state, let the state-feedback control input be

$$u[i] = f_0\hat{x}_p[i + \mu_{j-1}], \tag{35}$$

where f_0 is the state-feedback gain designed for the plant discretized on T_u. (35) can be described by

$$u[i] = F_0\hat{x}_p[i], \quad F_0 \triangleq \text{diag} \{f_0, \ldots, f_0\} \tag{36}$$

From (34) and (36), F_p is given by

$$F_p = (I - F_0\hat{B}_p)^{-1}F_0\hat{A}_p. \tag{37}$$

3 Applications to HDD

In the head-positioning control of hard disk drives, the track-seeking mode and the following mode are required. In the track-seeking mode, the feedforward performance is important because the head is moved to the desired track as soon as possible. After that, the head need to be positioned on the desired track while the information is read or written. In the track-following mode, the disturbance rejection performance is important because the head must be positioned finely on the desired track under the vibrations generated by the disk rotation and disturbance [17].

In this section, the proposed TDOF controllers are applied to each modes. While servo signals are detected at a constant period about 100 [μs], the control input can be changed 2–4 times between one sampling period in the recent hardware [3, 4]. Therefore, the proposed approaches are applicable.

3.1 Modeling of the plant

The experimental setup is 3.5-in hard disk drive. Let the nominal model of this plant be

$$P_c(s) = \frac{K_T}{M_p s^2}. \tag{38}$$

The sampling time of this drive is $T_s = 138.54$ [μs]. The actual plant has the first mechanical resonance mode around 2.7 [kHz]. The Nyquist frequency is also 3.6 [kHz]. In spite of these, this experiment challenges 3 sampling time (2.4 [kHz]) for one track seeking.

3.2 Applications of perfect tracking controller to seeking mode

In this section, the perfect tracking control system proposed in section 2.2 is applied to the seeking mode.

The perfect tracking controller is designed on input multiplicity $N = 4$. Because the plant is second order system ($n = 2$), the perfect tracking is assured $N/n = 2$ times at every sampling point. In the following simulations and experiments, the proposed method is compared with ZPETC proposed in [7]. ZPETC is one of the most popular and important feedforward controllers in the mechanical system control. [4] applied it to the hard disk drive control.

The frequency responses from the desired trajectory $y_d[i]$ to the output $y[i]$ are shown in Fig. 6. Because the proposed method (PTC) assures the perfect tracking, the command response becomes 1 in the all frequency. However, the gain of ZPETC decreases in the high frequency. The frequency of the short-span seeking is 2 [kHz] around. Therefore, it is expected that the proposed method can demonstrate better seeking performance than ZPETC.

The control period T_u of ZPETC becomes four times as long as that of the proposed method because ZPETC is single-rate. The single-rate PI-Lead filter is designed for feedback controller. Moreover, the desired trajectory (39) is selected, which jerk (differential acceleration) is smooth in order not to excite the mechanical resonance mode.

$$y^*(s) = \frac{A_r}{s(\tau_p s + 1)^4}. \tag{39}$$

In (39), the moving distance is $A_r = 1$[trak] and the frequency is $f_r = \frac{1}{2\pi\tau_r} = 2.8$[kHz].

Simulated and experimental results are shown in Fig. 7. Fig. 7(a)(b) show that the proposed method gives better performance than ZPETC. While the response of ZPETC has large tracking error caused by the unstable zero, that of the proposed method has almost zero tracking error. Fig. 7(c) also indicates that the proposed multirate input is very smooth. Table 1 shows the average seeking time which obtained in the experiments. The seeking-time of the PTC is much

\[1\] [4, 16] attempt to extend ZPETC to multirate controllers.
smaller than that of ZPETC and the conventional setting control[17]. The details of this experiments are presented in [19] which includes the middle-span seeking.

3.3 Applications of perfect disturbance rejection controller to following mode

In this section, the perfect disturbance rejection control system proposed in section 2.3 is applied to the following mode. The block diagram of the following mode is shown in Fig. 8. The disturbance \(d_c(t) \) represents the vibration of the track generated by the disk rotation, which is called track runout. The objective of this mode is to make the position error \(pe(t) \) zero. \(n(t) \) and \(d_r(t) \) represent the measurement noise and acceleration disturbance, respectively.

In the following mode, the two kinds of disturbance should be considered; repeatable and non-repeatable runout. Repeatable runout (RRO) is synchronous with the disk rotation, and non-repeatable runout (NRRO) is not synchronous. There exist three approaches to reject RRO; (1) repetitive control, (2) feedback control based on the internal model principle, and (3) identification and feedforward control. In this paper, the RRO is modeled by a sinusoidal disturbance, and it is perfectly rejected at \(M \) inter-sample points in the steady state. Therefore, the proposed approach is in category (2).

In this paper, the following disturbance models are considered.

\[
(A) : d(s) = \frac{1}{s^2 + \omega_R^2}, \quad (B) : d(s) = \frac{1}{s}
\]

The model (A) makes the sensitivity function \(S(s) \) small in the low frequency and the rotation frequency of the disk \(\omega_R = 2\pi \times 120 \). The model (B) is introduced for comparisons with conventional PI-lead filter, because the controller which composed of state-feedback and disturbance observer for (B) becomes 2nd order with an integrator.

The perfect disturbance rejection controllers are designed on \(N = 2, 4 \). The proposed method is compared with the single-rata disturbance observer, in which the disturbance is modeled by \(d[z] = Z[d(s)] \). The all poles of the regulator and observer are assigned to \(\exp(-2\pi f_s T_s) \) as shown in Table 2. These poles are selected to set the open-loop 0 dB cross-over to about 500[Hz]. Fig. 9(a) shows the sensitivity and complimentary sensitivity functions \(S[z], T[z] \) for model (A) and (B).

Fig. 9 shows the simulated results under the 120[Hz] sinusoidal runout added from \(t = 0 \), which amplitude is 1 [trk] = 3.6[μm]. Although the transient position errors are large, the steady state position errors of the controllers (A) become zero at sampling point, because the feedback controller has the internal model of the RRO. However, Fig. 9(b) shows that the inter-sample responses have the tracking error even in the steady state. It is shown that the errors of the plant position and velocity become zero at every 2\(T_s/N \) by the proposed controllers. Moreover, the inter-sample posi-

Table 1: Experimental seeking-time.

<table>
<thead>
<tr>
<th></th>
<th>PTC</th>
<th>ZPETC</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.17T_1</td>
<td>3.77T_1</td>
<td>4.14T_1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8: Following mode.
The open loop characteristics are shown in Table 2. As smaller than that of the single-rate controller, the results of [1], it is shown that the gain and experiments. The proposed methods can be extended to the proposed inter-sample observer. The phase margin are increased by the multirate feedback over, the multirate feedback controller is also proposed, this approach are demonstrated by the simulations and this mode of the hard disk drive, and the later is also applied to the track-following mode. The advantages of this approach are demonstrated by the simulations and experiments. The proposed methods can be extended to the plants with time delay [19].

Finally, the authors would like to note that part of this research is carried out with a subsidy of the Scientific Research Fund of the Ministry of Education.

References