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Abstract
In this paper, novel multirate feedback controllers

are proposed for digital control systems with rela-
tively long sampling period. The proposed controllers
achieve vibration suppression and disturbance rejec-
tion even in the semi-Nyquist frequency region. First,
the continuous-time vibration suppression controller is
exactly discretized by the multirate sampling control
based on the closed-loop characteristics. Second, the
multirate repetitive controllers are proposed both by
the feedback and feedforward approaches. Moreover,
the inter-sample disturbance rejection performance is
optimized by the fast sampling approach. The pro-
posed controllers are applied to the settling and follow-
ing modes of hard disk drive, and the advantages of
these approaches are demonstrated by simulations.

1 Introduction
A digital control system generally has a sampler for

the plant output y(t), and one holder of the control in-
put u(t). The sampling period of the output Ty is gen-
erally decided by the speed of the sensor or the A/D
converter. On the other hand, the control period of the
input Tu is also determined by the speed of the actu-
ator, D/A converter, or the calculation on the CPU.
In practical control systems, these periods are usually
restricted by the hardware. In this paper, the digital
control systems with longer sampling period (Tu < Ty)
are considered. This restriction may be general be-
cause D/A converters are usually faster than the A/D
converters. Especially, head-positioning systems of the
hard disk drive (HDD) or the visual servo systems of
robot manipulator belong to this category, because the
sampling rates of the measurement are relatively slow
[1]–[3].
For these systems, it is difficult to suppress vibra-

tion and to reject disturbance in high frequency re-
gion because the Nyquist frequency is relatively low.
In this paper, multirate sampling control is introduced,
in which the plant input is changed N times during one
sampling period. This scheme is also called the multi-
rate input control. Using this scheme, novel multirate
feedback controllers are proposed, which achieve vibra-
tion suppression and disturbance rejection even in the

semi-Nyquist frequency region. Moreover, the proposed
methods are applied to the head-positioning system of
hard disk drive.
Vibration suppression controllers have been proposed

by the various approaches in the continuous-time sys-
tem. To implement them in the digital control systems,
the designed analog controllers are discretized by the
Tustin transformation or other methods. Because these
transformations are based only on the open-loop char-
acteristics of the controller, the closed-loop becomes low
performance or unstable when the resonance mode is
close to the Nyquist frequency.
On the other hand, introducing multirate sampling

control, the authors proposed a novel discretization
method of controllers based on the closed-loop char-
acteristics [4]. In this paper, this approach is extended
to the hardware restriction of (Tu < Ty) and applied
to the vibration suppression controller. The advan-
tages of the proposed method are that the controller
is discretized based on the closed-loop characteristics,
and the plant state of the digitally controlled system
completely matches that of the original continuous-time
system at M inter-sample points during Ty .
In the repetitive control system [5], conventional

single-rate controllers do not have enough inter-sample
performance to reject disturbance in the semi-Nyquist
frequency region [6]. On the other hand, authors
proposed a novel multirate feedback controller, which
achieves the perfect disturbance rejection at M inter-
sample points [3]. In this paper, the proposed approach
is modified to repetitive control, and applied to reject
high order repeatable run-out of hard disk drive.
Repetitive feedback controllers based on the internal

model principle have disadvantages that the closed-loop
characteristics become worse and difficult to assure sta-
bility robustness [6]. Therefore, this paper proposes
novel approach that never has these problems, based
on the open-loop estimation and disturbance rejection
by feedforward approach.

2 Discretization of controller based on
multirate control

In this section, novel discretization method of an ana-
log controller is proposed for the system with longer
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Figure 1: Multirate sampling control.

sampling period (Tu < Ty) base on the multirate input
control. The proposed method is applied to vibration
suppression controller in section 4.1. In the proposed
multirate scheme, the plant input is changed N times
during Ty and the plant state is evaluated M times in
this interval as shown in Fig. 1. The positive integersM
and N are referred to as input and state multiplicities,
respectively. N is determined by the hardware restric-
tion. In this paper, the state multiplicity is defined as
M = N/n except for section 3.3, where n is the plant
order.
In Fig. 1, µj(j = 0, 1, · · ·, N ) and νk(k = 1, · · · ,M )

are the parameters for the timing of the input changing
and the state evaluation, which satisfy the conditions
(1) and (2).

0 = µ0 < µ1 < µ2 < ... < µN = 1 (1)

0 < ν1 < ν2 < ... < νM = 1 (2)

If Ty is divided at same intervals, the parameters are
set to µj = j/N, νk = k/M .
For simplification, the continuous-time plant is as-

sumed to be SISO system in this paper. The proposed
methods, however, can be extended to deal with the
MIMO system by the same way as [4].

2.1 Plant Discretization by Multirate Sampling
Consider the continuous-time plant described by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t). (3)

The discrete-time plant discretized by the multirate
sampling control (Fig. 1) becomes

x[i+ 1] = Ax[i] + Bu[i] , y[i] = Cx[i], (4)

where x[i] = x(iT ), and matrices A,B,C and vectors
u are given by[

A B

C O

]
:=

[
eAcTy b1 · · · bN

cc 0 · · · 0

]
, (5)

bj :=
∫ (1−µ(j−1))Ty

(1−µj)Ty

eAcτbcdτ , u := [u1, · · · , uN ]T ,

(6)
The inter-sample plant state at t = (i+ νk)Ty is repre-
sented by

x̃[i] = Ãx[i] + B̃u[i], (7)

[
Ã B̃

]
:=




Ã1 b̃11 · · · b̃1N

...
...

...
ÃM b̃M1 · · · b̃MN


 , (8)

Ãk := eAcνkTy , x̃ := [x1, · · · ,xM ]T , (9)
xk[i] = x[i+ νk] = x((i + νk)Ty), (10)

b̃kj :=




µj < νk :
∫ (νk−µ(j−1))Ty

(νk−µj)Ty
eAcτbcdτ

µ(j−1) < νk ≤ µj :
∫ (νk−µ(j−1))Ty

0
eAcτbcdτ

νk ≤ µ(j−1) : 0

,

2.2 Design of continuous-time controller
In this section, the continuous-time controller is de-

signed based on the regulator and the disturbance ob-
server. Consider the continuous-time plant model de-
scribed by

ẋp(t) = Acpxp(t) + bcp(u(t)− d(t)) (11)
y(t) = ccpxp(t), (12)

where d(t) is the disturbance input. Let the disturbance
model be

ẋd(t) = Acdxd(t) , d(t) = ccdxd(t). (13)

For example, the sinusoidal type disturbance with fre-
quency ωd is modeled by

Acd =
[

0 1
−ω2

d 0

]
, ccd = [1, 0]. (14)

The continuous-time augmented system consisting of
(11) and (13) is represented by

ẋ(t) = Acx(t) + bcu(t), y(t) = ccx(t), (15)

Ac :=
[

Acp −bcpccd

O Acd

]
, bc :=

[
bcp

0

]
,x :=

[
xp

xd

]
,

where cc := [ccp,0]. For the plant (15), the continuous-
time observer is designed from the Gopinath’s method
by

v̇(t) = Âcv̂(t) + b̂cy(t) + Ĵcu(t) (16)
x̂(t) = Ĉcv̂(t) + d̂cy(t). (17)

In order to regulate the plant state and reject the dis-
turbance, the continuous-time regulator is designed by

u(t) = fcpx̂p(t) + ccdx̂d(t) = fcx̂(t), (18)

where fc := [f cp, ccd]. Letting ev be the estimation er-
rors of the observer (ev = v̂−v), the following equation
is obtained.

x̂(t) = x(t) + Ĉev(t). (19)
From the above equations, the closed-loop system is
represented by
 ẋp(t)

ẋd(t)
ėv(t)


 =


 Af O bcpfcĈc

O Ad O

O O Âc





 xp(t)

xd(t)
ev(t)


 , (20)

where Af := Acp+bcpf cp. The transitions of the states
xp,xd from t = iTy to t = (i + νk)Ty are represented
by[
xp[i + νk]
xd[i + νk]
ev[i + 1]

]
=


 eAf νkTy

O �

O eAdνkTy
O

O O e
ˆ
AcTy




[
xp[i]
xd[i]
ev [i]

]
. (21)
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Figure 2: Multirate control with disturbance observer.

2.3 Discretization of the controller by multirate
control
In this section, the digital controller is obtained from

the continuous-time controller designed in section 2.2
using multirate input control. Discretizing (15) by the
multirate sampling control, the inter-sample plant state
at t = (i+ νk)Ty can be calculated from the kth row of
(7) by

x[i+ νk] = Ãkx[i] + B̃ku[i] (22)

Ãk =
[

Ãpk Ãpdk

O Ãdk

]
, B̃k =

[
B̃pk

O

]
.

For the plant (15) discretized by (4), the discrete-time
observer on the sampling points is obtained by

v̂[i+ 1] = Âv̂[i] + b̂y[i] + Ĵu[i] (23)
x̂[i] = Ĉv̂[i] + d̂y[i]. (24)

As shown in Fig. 2, let the feedback control law be

u[i] = F px̂p[i] + F dx̂d[i] = F x̂[i], (25)

where F := [F p,F d]. From (22) to (25), the closed-
loop system is represented by
 xp[i+ νk]

xd[i+ νk]
ev[i+ 1]


 =


 Ãpk + B̃pkF p Ãpdk + B̃pkF d B̃pkFĈ

O Ãdk O

O O Â





 xp[i]

xd[i]
ev[i]


 .

(26)
Comparing (21) and (26), if the following conditions
are satisfied, the plant state (xp) of the digitally con-
trolled system completely matches that of the original
continuous-time system at M inter-sample points on
t = (i + νk)Ty .

Ãpk + B̃pkF p = eAf νkTy , (27)
Ãpdk + B̃pkF d = O, (28)

ev[i] = O. (29)

The simultaneous equations of (27) and (28) for all k(=
1, · · · ,M ) become

Ãp + B̃pF p = E, Ãpd + B̃pF d = O, (30)

where Ãp, Ãpd, B̃p and E are defined by




Ãp1

...
ÃpM


 ,




Ãpd1

...
ÃpdM


 ,




B̃p1

...
B̃pM


 ,



eAf ν1Ty

...
eAfνM Ty


 .

Because non-singularity of the matrix B̃p can be as-
sured on M = N/n [3, 7], F p and F d are obtained
by

F p = B̃
−1

p (E − Ãp), F d = −B̃
−1

p Ãpd. (31)

Moreover, [4] proposed the discretization for observer
based on multirate output control, where the plant out-
put is detected more frequently than the control period
(Ty < Tu). However, in this paper, discrete-time ob-
server (23) is simply obtained, so that the eigenvalues
of Â become identical to those of exp(ÂcTy), because
the plant is assumed to have longer sampling period
(Ty > Tu). Substituting (23) for (25), the feedback
type controller is obtained by[
v̂[i+ 1]

u[i]

]
=

[
Â + ĴF Ĉ b̂ + ĴF d̂

F Ĉ F d̂

] [
v̂[i]
y[i]

]
. (32)

2.4 Initial value compensation
In this section, the initial value of the controller (32)

is considered in order to eliminate the estimation error
of the observer and satisfy (29). From (24), if x[0] is
known, the initial value of controller should be set by

Ĉv̂[0] = x[0]− d̂y[0]. (33)

By this compensation, it is possible to prevent the over-
shoot of the step (or initial value) response because the
plant state converges only by the mode of the regulator.
Therefore, fcp should be designed to assign the eigen-
values of Af to the small (or zero) overshoot region.

3 Repetitive control based on multirate control
In this section, two multirate repetitive controllers

are proposed, which are 1) feedback approach based on
internal model principle and 2) feedforward disturbance
rejection approach based on the open-loop estimation.

3.1 Feedback repetitive control
The periodic disturbance of T0 := 2π/ω0 is repre-

sented by

d(t) = a0 +
∞∑

k=1

ak cos kω0t+ bk sin kω0t, (34)

where ω0 is known and ak, bk are unknown parameters.
Letting the disturbance model (13) be (34), the repet-
itive feedback controller is obtained by (32), which has
internal model s2 + (kω0)2 in discrete-time domain.
From (26) and (28), the influence from disturbance

xd[i] to the inter-sample state xp[i + νk] becomes zero
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Figure 3: Feedforwad repetitive control.

at t = (i+νk)Ty. Moreover, xp[i] and ev[i] converge to
zero at the rate of the eigenvalues of ÃpM+B̃pMF p and
Â (the poles of the regulator and observer). Therefore,
the repetitive disturbance is perfectly rejected (xp[i +
νk] = 0) at M inter-sample points in the steady state.

3.2 Feedforward repetitive control
The repetitive feedback control based on the internal

model principle has disadvantages that the closed-loop
characteristics become worse and difficult to assure sta-
bility robustness [6]. Therefore, in this section, novel
repetitive controller based on the open-loop estimation
and feedforward disturbance rejection are proposed as
shown in Fig. 3
The repetitive disturbance is estimated by the open-

loop disturbance observer. When the estimation con-
verges to the steady state, the switch turns on at t = t0.
After that, the switch turns off immediately. The repet-
itive disturbance is calculated by (35) from the initial
value x̂d[t0] which has the amplitude and phase infor-
mation of the disturbance.

x̂d[i+ 1] = Addx̂d[i], (35)

where Add = eAcdTy . Because the disturbance feedfor-
ward F d is obtained by (31), the perfect disturbance
rejection is achieved at M inter-sample points. The
advantage of this approach is that the stability robust-
ness can be guaranteed easily only by the conventional
feedback controller C2[z].
Moreover, by introducing the initial value compen-

sation of the feedback controller C2[z] at t = t0, the
transient response can be improved after this switching
action. It is possible to prevent the overshoot by set-
ting the initial state v̂[t0] to be (33) using the estimated
value of open-loop observer x̂[t0].

3.3 Optimization of the inter-sample distur-
bance rejection performance
In section 3.1 and section 3.2, the state multiplicity is

defined as M = N/n in order to reject the disturbance
perfectly at M inter-sample points. In this section, M
is selected more than N/n to optimize the inter-sample
performance. This approach is referred to as the fast
sampling technique in the modern sampled-data control
theory [8, 9, 10].
When M is selected more than N/n, it is impossi-

ble to satisfy (30) because the number of row of B̃p is
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Figure 4: Frequency responses.

larger than that of column. Therefore, the inter-sample
performance can be optimized by minimizing B̃p for all
k(= 1, · · · ,M ). Thus, the problem is formulated by

min
F d

‖Ãpd + B̃pF d‖ s. t. ÃpdM + B̃pMF d = O. (36)

The above constraint is the condition that the controller
includes the disturbance model, which assures the con-
vergence of xp[i] at the sampling points (k =M ).
From the Lagrange’s undetermined multiplier

method, the solution of (36) is obtained by

Fd = Z[Y T (Y ZY T )−1
Y ZX

T − X
T ,−Y T (Y ZY T )−1]Ãpd,

(37)
where X := [B̃

T
p1, · · · B̃T

p(M−1)]
T ,Y := B̃pM ,Z := (XT

X)−1,

and the Frobenius norm is adopted in (36). M should
be selected more than N to assure the non-singularity
of Z.

4 Applications to HDD
In the head-positioning control of hard disk drives ,

the control strategy is divided into three modes; seek-
ing mode, settling mode, and following mode. In the
seeking mode, the head is moved to the desired track as
fast as possible. Next, the head is settled to the track
without overshoot in the settling mode. After that, the
head need to be positioned on the desired track while
the information is read or written. In the following
mode, the head is positioned finely on the desired track
under the vibrations generated by the disk rotation and
disturbance.
In this section, the proposed feedback controllers are

applied to the settling and following modes. While
servo signals are detected at a constant period about
100 [µs], the control input can be changed 2∼4 times
between one sampling period in the recent hardware [3].
Therefore, the proposed approaches are applicable.

4.1 Vibration suppression control based on mul-
tirate control
Let the nominal model of this plant be

Pc(s) =
K

Ms2
ω2

1n

s2 + 2ζ1nω1ns+ ω2
1n

, (38)

where ω1n = 2.7 × 103[rad/sec] and ζ1n = 0.1. This
model is obtained from the experimental setup of 3.5-in
hard disk drive [3]. The sampling time and input mul-
tiplicity of this drive are Ty = 138.54 [µs] and N = 4.
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As shown in Fig. 4(a), the actual plant has the first
mechanical resonance mode around 2.7 [kHz], and its
variation range is ± 500 [Hz]. The Nyquist frequency
(3.6 [kHz]) is close to this resonance mode. Therefore,
it is very difficult to suppress the vibration in the con-
ventional single-rate controller.
Continuous-time controller is designed by regulator

and disturbance observer, in which the disturbance is
modeled by the step type function d(s) = 1/s, the poles
of the regulator are set to (s + ωc)4, and those of the
observer are set to (s + ωc)2(s2 + 2ζ1ω1ns + ω2

1n). As
shown in Fig. 4(b), this controller has notch character-
istic at the resonance frequency. The parameter ωc is
tuned so that the bandwidth of the closed-loop system
is set as high as possible, and stabilize the ± 1 [kHz] res-
onance variation. Fig. 4(b) also shows that the Tustin
transformation has large approximation error because
the resonance mode is close to the Nyquist frequency.
Simulated results are shown in Fig. 5, which indicates

that the proposed method has better performance than
the Tustin transformations. In Fig. 5(b), ”Multirate
Tustin” method is composed of the digital controller
discretized by Tustin transformation on Ty/N and the
interpolator which has an up-sampler and a zero-order-
hold [11]. While the responses of the Tustin transfor-
mations are oscillated, that of the proposed method
has no vibration and identical step response with ideal
continuous-time system.
Fig. 6 shows the sensitivity and complementary sen-

sitivity functions S[z], T [z] of the closed loop systems.
As shown in Fig. 6(a), the proposed method can remain
the ideal characteristics of the original continuous-time
controller, because the proposed method is based on the
closed-loop system. On the other hand, in the conven-
tional Tustin transformations (Fig. 6(b)), the closed-
systems are quite different from the original analog
system, because those controllers are discretized based
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only on the open-loop characteristics.

4.2 Repetitive control based on multirate con-
trol
In this section, the proposed multirate repetitive con-

trollers are applied to the following mode. In the fol-
lowing mode, two kinds of disturbance at the output
of the plant dy(t) should be considered; repeatable and
non-repeatable runout. Repeatable runout (RRO) is
synchronous with the disk rotation, and non-repeatable
runout (NRRO) is not synchronous. In this paper, the
RRO is perfectly rejected by the proposed repetitive
controllers at M inter-sample points.
For simplification, the plant is modeled by

Pc(s) =
K

Ms2
, (39)

and RRO are considered at 1st, 10th, and 20th order1 .

d(t) =
∑

k=1,10,20

ak cos kω0t + bk sin kω0t, (40)

where ω0 = 2π120[rad/sec].
Fig. 7 shows the closed-loop characteristics both of

the feedback (Fig. 2) and feedforward (Fig. 3) repeti-
tive control systems. Fig. 7(a) indicates the disadvan-
tages of the feedback repetitive controller, where the
closed-loop characteristics become worse and difficult
to assure stability robustness. On the other hand, in
the proposed feedforward repetitive control (Fig. 3),
the closed-loop characteristics depends only on C2[z]
which do not need to have the internal model of (40).
Therefore, the feedback characteristics are better than
the feedback approach as shown in Fig. 7(b).
Fig. 8 shows the simulated results of the proposed

repetitive feedforward control on M = N/n under the
20th order sinusoidal runout. The switch turns on at
just t0 = 10[ms]. As shown in Fig. 8(a), the posi-
tion error converges quickly after the switching action.
Moreover, it is shown that the proposed initial value
compensation (IVC) can prevent the large overshoot.
Fig. 8(b) shows that the inter-sample response of the
conventional single-rate controller has large error in the
steady state. On the other hand, the errors of the plant
position and velocity become zero at every Ty/2 by the

1In practice, these modes should be selected by the experi-
mental analysis.
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Figure 10: Optimized inter-sample response.

proposed controllers2. Moreover, the inter-sample po-
sition error of the proposed multirate method is much
smaller than that of the single-rate controller.
Fig. 9 shows analyzed results of the error ratio ER(k)

for the disturbance order k. Considering the inter-
sample response, the error ratio is calculated by

E2
R(k) :=

∫ ts+kT0

ts
e2(t)dt∫ ts+kT0

ts
d2

y(t)dt
, (41)

where dy(t) = Tp sin kω0t, T0 = 2π/ω0, and ts is se-
lected as 20[s] in order to evaluate the steady state. In
the high frequency region close to the Nyquist frequency
(3.6[kHz]), the disturbance rejection performance is
much improved by the proposed multirate control, com-
pared with the single-rate controller. Therefore, it is
found that the proposed method can demonstrate much
effective performance for high-order disturbance.
In the above simulations (Fig. 7 ∼ 9), the state mul-

tiplicity is selected as M = N/n(= 2) to reject the
disturbance perfectly atM inter-sample points. In Fig.
10, however, the inter-sample performance is optimized
by (37).

2In the proposed method, the perfect disturbance rejection is
assured M(= N/np = 4/2 = 2) times during Ty.

As shown in Fig. 10(a), the optimized inter-sample re-
sponse on M = 10 is not improved so much compared
with the case of without the optimization on M = 2.
Therefore, it can be said that the selection ofM = N/n
proposed in section 3.1 is valid in engineering sense be-
cause F d of (31) is simpler than that of (37). However,
the optimization approach is valuable because it is ap-
plicable to the case that N/n is non-integer. As shown
in Fig. 10(b), the inter-sample performance is improved
in higher input multiplicity N .

5 Conclusion
In this paper, the digital control systems which had

hardware restrictions of Tu < Ty were assumed, novel
multirate feedback controllers were proposed, which
achieved vibration suppression and disturbance rejec-
tion in the semi-Nyquist frequency region. Moreover,
the inter-sample disturbance rejection performance has
been optimized by the fast sampling approach.
Furthermore, the proposed methods were applied to

the settling and following modes of the hard disk drive.
The advantages of these approaches were demonstrated
by the simulations.
Finally, the authors would like to note that part of

this research is carried out with a subsidy of the Scien-
tific Research Fund of the Ministry of Education.
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