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Abstract

In this paper, two multirate repetitive controllers are
proposed, namely, repetitive intersample disturbance
rejection (RIDR) and repetitive perfect tracking con-
trol (RPTC). First, in order to develop RIDR, mul-
tirate intersample disturbance rejection algorithm is
reviewed which was proposed by authors for general
digital control systems with restricted sampling fre-
quency. Second, RPTC method is proposed to reduce
the computation cost for system with many distur-
bance modes, in which the multirate control is intro-
duced to overcome unstable zero problem of discrete-
time plant. Third, both for RIDR and RPTC, the novel
scheme of repetitive feedforward control is proposed
based on switching mechanism, which enables the rejec-
tion of periodical disturbance without any sacrifice of
the closed-loop characteristics. Finally, the proposed
methods are applied to high-order repeatable runout
(RRO) rejection problem of hard disk drive (HDD)
and high-speed motion tracking problem of visual ser-
voing. The advantages and disadvantages of these ap-
proaches are demonstrated through simulations and ex-
periments.

1 Introduction

Repetitive control is a widely used technique to re-
ject periodic disturbances [1, 2]. Although this con-
trol scheme has excellent performance for low order
disturbance modes, it is very difficult to reject rela-
tively higher frequency modes. The reasons of this dif-
ficulty are 1) the delay caused by zero-order hold of
plant input when the high-order disturbance is close to
Nyquist frequency, 2) the low-pass filter is required to
assure the stability robustness, and 3) approximated
inverse is implemented because of the unstable zero of
discrete-time plant [3] in the conventional discrete-time
repetitive controller [1]. In this paper, these problems
are resolved by introducing novel control schemes.

A digital control system generally has the sampler
S of sensor output y(t) and the holder H of control
input u(t), as shown in Fig. 1. The recent develop-
ment of computer technology enabled to set the con-
trol period Tu shorter than the sampling period Ty

when the sensor speed is restricted. In this paper,

y(t)

y[i]

u(t)u[i]r[i]
du(t) dy(t)

n(t)
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Figure 1: Digital control system.

the above-mentioned first problem of holder delay is
overcome by introducing repetitive intersample distur-
bance rejection (RIDR) using the multirate input con-
trol (Tu < Ty). Especially in head-positioning systems
of hard disk drives [4, 5] and visual servo systems of
robot manipulators [6], the multirate input control has
great advantages since the sampling period of sensor
signal is restricted to be long by the number of servo
signals and the video rate of camera, respectively.

In the conventional repetitive control [1], the
discrete-time disturbance model (zNd − 1)−1 is imple-
mented in feedback controller as the internal model.
Although the sensitivity function becomes zero at the
disturbance frequencies kωd, the sensitivity has big
amplitude at the other frequency band, which causes
severe damage in total tracking accuracy. Moreover,
the closed-loop system could become unstable because
the peak gain of internal model excites the unmodeled
dynamics. Therefore, low-pass filter is usually imple-
mented in repetitive control to assure the stability ro-
bustness at the sacrifice of high-frequency disturbance
rejection performance. On the other hand, this paper
introduces novel switching schemes to achieve repeti-
tive disturbance rejection by feedforward control.

The third problem of discrete-time unstable zero was
not crucial in the conventional feedback repetitive con-
trol because the stability can be assured even when the
approximated zero-phase-error (ZPE) inverse is utilized
[1]. However, when the feedforward scheme is intro-
duced with switching scheme, the gain characteristics
of ZPE [7] causes the tracking error especially for high-
order disturbance. Therefore, in the proposed RPTC
scheme, the perfect tracking control which was pro-
posed by authors in [8] is implemented using multirate
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Figure 2: Multirate sampling control.

input control to obtain the ideal inner-loop system in
discrete-time domain.

2 Intersample Disturbance Rejection Control

In this section, the intersample disturbance rejection
control which was proposed by authors in [4, 9] is briefly
reviewed. For simplification, the plant is assumed to
be a single-input single-output system. The proposed
methods, however, can be extended to deal with the
multi-input multi-output system [10, 11].

In the proposed multirate scheme, it is assumed that
the control period Tu can be set N times shorter than
the sampling period of plant output Ty(= NTu). The
plant state variable x is evaluated M := N/n times
during one sampling period, where n is the plant order.

In Fig. 2, µj(j = 0, 1, · · · , N) and νk(k = 1, · · · ,M)
are parameters for the timing of input changing and
state evaluation, which satisfy the following conditions.

0 = µ0 < · · · < µN = 1, 0 < ν1 < · · · < νM = 1 (1)

If Ty is divided at equal intervals, the parameters are
set to µj = j/N, νk = k/M , and Tu = (µj − µ(j−1))Ty.

2.1 Plant discretization by multirate sampling
Consider the continuous-time plant described by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t). (2)

The discrete-time plant discretized by the multirate
sampling control of Fig. 2 becomes

x[i + 1] = Ax[i] + Bu[i] , y[i] = cx[i], (3)

where x[i] = x(iT ), and where A,B, c, and u[i] are
given by[

A B
c O

]
:=

[
eAcTy b1 · · · bN

cc 0 · · · 0

]
, (4)

bj :=
∫ (1−µ(j−1))Ty

(1−µj)Ty

eAcτbcdτ , u[i] := [u1[i], · · · , uN [i]]T .(5)

2.2 Intersample disturbance rejection (IDR)
To design the intersample disturbance rejection con-

trol, consider the continuous-time plant described by

ẋp(t) = Acpxp(t)+bcp(u(t)−d(t)), y(t) = ccpxp(t),(6)

where d(t) is the disturbance input. Let the distur-
bance model be

ẋd(t) = Acdxd(t), d(t) = ccdxd(t). (7)

- yc(t) y[i]uc(t)

d(t)
u[i] SH

(Ty)(Ty

N )
Pc(s)

F

x̂[i]

[
Â b̂ Ĵ

Ĉ d̂ O

]+

Figure 3: Multirate control with disturbance observer.

For example, step type disturbance can be modeled as
Acd = 0, ccd = 1 and sinusoidal type disturbance with
frequency ωd can be modeled as

Acd = Aω(ωd) :=
[

0 1
−ω2

d 0

]
, ccd = [1, 0].(8)

The continuous-time augmented system consisting of
(6) and (7) is represented by (2) where

Ac :=
[

Acp −bcpccd

O Acd

]
, bc :=

[
bcp

0

]
, (9)

cc := [ccp,0],x := [xT
p ,xT

d ]T . (10)

The intersample plant state at t = (i + νk)Ty is repre-
sented by

x̃p[i + νk] = Ãpkxp[i] + Ẽkxd[i] + B̃pku[i], (11)

where the coefficient matrices are defined in [4, 9].
For the discrete-time plant (3) with (9), the esti-

mated state x̂ = [x̂T
p , x̂T

d ]T can be obtained at sampling
point through observer, as shown in Fig. 3. Then, let
the feedback control law be

u[i] = F px̂p[i] + F dx̂d[i] := F x̂[i]. (12)

From (11) and (12), the closed-loop system is repre-
sented by

xp[i + νk] = ÃFpkxp[i] + (Ẽk + B̃pkF d)xd[i] + B̃pkFe[i],

where ÃFpk := Ãpk + B̃pkF p and e[i] := x̂[i] − x[i].
The matrix gain F d is selected so that the second term
of above right side becomes zero for all k = 1, · · · ,M
as

F d = −B̃
−1

p Ẽ. (13)

The full rank of B̃p is assured in [12]. Thus the in-
fluence from disturbance xd[i] to the intersample state
xp[i + νk] becomes zero. Moreover, xp[i] and e[i] con-
verge to zero if ÃpM + B̃pMF p and Â (the regulator
and observer) are stable [4, 9]. Therefore, perfect dis-
turbance rejection is achieved (xp[i + νk] = 0) in the
steady state. The poles of the regulator and observer
should be tuned by taking account of the tradeoff be-
tween the performance and stability robustness.

In this paper, the number M is fixed to N/n in order
to reject the disturbance perfectly at M inter-sample
points. On the other hand, M can be selected more
than N/n to optimize the whole inter-sample perfor-
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Figure 4: Feedforward RIDR control.

mance [9] in the same way as modern sampled-data
theory [13].

3 Multirate Repetitive Controllers

3.1 Repetitive intersample disturbance rejec-
tion (RIDR)

In this section, the proposed intersample disturbance
rejection control is applied to periodic disturbance [9].
The disturbance with period Td := 2π/ωd can be rep-
resented by the Fourier series as

d(t) = a0 +
∑

k

ak cos kωdt + bk sin kωdt. (14)

where ωd is known and a0, ak, and bk are unknown
parameters. Because the index k can be selected
freely, the disturbance mode with large power spectrum
should be modeled from experimental analysis. By let-
ting the disturbance model (7) be (15), the repetitive
disturbance is perfectly rejected (xp[i + νk] = 0) at M
inter-sample points in the steady state.

Acd = diag{0,Aω(ωd), · · · ,Aω(kωd), · · ·}(15)
ccd = [1, 1, 0, · · · , 1, 0, · · ·] (16)

However, the repetitive feedback control based on the
internal model principle has disadvantages that closed-
loop characteristics worsen and it becomes difficult to
assure stability robustness [14]. Therefore, in this sec-
tion, a novel repetitive controller based on open-loop
estimation with switching mechanism and feedforward
disturbance rejection is proposed, as shown in Fig. 4
[9].

The repetitive disturbance is estimated by the open-
loop disturbance observer based on (14). When the
estimation converges to the steady state, the switch
turns on at t = tsw. After that, the switch turns off
immediately. Repetitive disturbance is calculated by
(17) from the initial value x̂d[tsw] which contains the
amplitude and phase information of the disturbance.

x̂d[i + 1] = Addx̂d[i], Add = exp(AcdTy) (17)

Because the disturbance feedforward F d is obtained
by (13), perfect disturbance rejection is achieved at M
inter-sample points. The advantage of this approach
is that the feedback controller C2[z] is completely in-
dependent of the repetitive controller. Thus stability
robustness is guaranteed by the feedback controller ob-

y[i]u[i]r[i]
Pc(s)

C2[z]

B−1(I − z−1A)

z−1c
y0[i]

u0[i]

+

−

−

−−

+

+

Switch

PTC

Periodic Signal Generator

S

H(Ty)

H
(Ty)(Ty

n )

du dy

Figure 5: Repetitive perfect tracking controller.

−r[i] −pd

−ṗd
y[i]

1
2Ty

z−1 z−1 z−(Nd−2)+ +

+− Switch

Figure 6: Periodic signal generator for 2nd order system.

tained from robust control theory. With this scheme, it
becomes possible to construct the repetitive controller
without sacrifice of the feedback characteristics. In Fig.
4, the C2[z] is assumed to be a single-rate controller
with Ty. However, multirate feedback controller is also
available to recover the phase-delay generated by zero-
order hold [5, 15].

3.2 Repetitive perfect tracking control (RPTC)
In the above RIDR method, the observer estimates

periodic disturbance based on the disturbance model
(14). Although this model has diagonal structure (15),
the on-line computation cost will become high if many
disturbance modes are selected. In this section, a novel
repetitive control scheme is proposed based on perfect
tracking controller (PTC) [5, 8] with periodic signal
generator (PSG). Because the PSG can be constructed
by the series of z−1, the computation cost is very low
[16].

First, the perfect tracking controller is designed using
multirate feedforward control [8] as minor-loop system
to obtain the desired command response z−1I. The in-
put multiplicity is fixed to the plant order N = n. The
measured output y[i] of (3) is modified using discrete-
time disturbance d[i] as

y[i] = p[i] − d[i] := cx[i] − d[i], (18)

where p[i] and x[i] are the plant output and state,
respectively. From (3), the transfer function from
x[i + 1] ∈ Rn to the multirate input u[i] ∈ Rn is
described by

u[i] = B−1(I − z−1A)x[i + 1]. (19)

In (19), the nonsingularity of matrix B is assured for
controllable plant in case of N = n [12]. Because all
poles of the transfer function (19) are zero, it is found
that (19) is a stable inverse system. Thus, if the control
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Figure 7: Simulation results of HDD. (Feedforward RIDR vs. Feedforward RPTC)

input is calculated by (20) as shown in Fig. 5, perfect
tracking is guaranteed at sampling points [8] because
(20) is the exact inverse plant.

u0[i] = B−1(I − z−1A)r[i] (20)

Here, r[i](:= xd[i + 1]) is previewed desired trajectory
of plant state. The output of the nominal plant without
disturbance can be calculated by

y0[i] = cxd[i] = z−1 cr[i]. (21)

When the tracking error y[i]−y0[i] is caused by distur-
bance or modeling error, it can be eliminated using the
robust feedback controller C2[z], as shown in Fig. 5.

Second, the periodic signal generator is designed to
generate desired trajectory r[i]. Because perfect track-
ing (x[i] = xd[i] or x[i] = z−1Inr[i]) is assured, the
minor-loop system is expressed as

y[i] = z−1r[i] − d2[i], r[i] := cr[i], (22)

where d2[i] := (1 − P [z]C2[z])−1d[i] and P [z] is the
single-rate plant with Ty. In the same way as section
3.1, both the feedback and feedforward approaches can
be considered in this RPTC scheme. In case of feedback
scheme, the switch of Fig. 5 is always on-state. The
PSG can be designed as the outer-loop controller by

r[i] = − z

zNd − 1
y[i], (23)

where integer Nd is defined as Td/Ty. From (22) and
(23), the total closed-loop system is represented by

y[i] = −zNd − 1
zNd

d2[i] (24)

Therefore, the repetitive disturbance which is modeled
as d[i] = (zNd − 1)−1 is completely rejected at every
sampling point in steady-state.

In (22), there is redundancy to decide r[i] ∈ Rn from
the PSG output r[i]. This issue was discussed in [17]
to make the multirate input smooth. Fig. 6 shows one
example of the 2nd order plant with state variable x =
[p, ṗ], in which the velocity command is generated by
ṗd[i] = (pd[i + 1] − pd[i − 1])/2Ty.

However, the internal model (23) damages the closed-
loop characteristics such as stability robustness since
the gain of PSG becomes infinity at high order har-

monics kωd. Therefore, the feedforward algorithm of
RPTC with switching mechanism is proposed as in sec-
tion 3.1. The switch of Fig. 5 turns on during one dis-
turbance period Td in the steady-state after the tran-
sient of minor feedback loop with C2[z] and Pc(s). By
using the stored signal, the PSG can reproduce the
feedforward signal r[i] unless the disturbance changes
suddenly. Therefore, the disturbance can be rejected at
every sampling point without sacrifice of the feedback
characteristics.

4 Applications
4.1 RRO rejection for HDD

In the servo systems of hard disk drives (HDDs), the
head position is detected by the discrete servo signals
embedded in the disks. Therefore, the output sampling
period Ty is decided by the number of these signals and
the rotational frequency of the spindle motor. However,
it is possible to set the control period Tu shorter than
Ty because of the recent development of CPU. Thus
the controller can be regarded as the multirate system
which has the hardware restriction of Tu < Ty.

In the following mode of HDD, two kinds of dis-
turbance at the plant output should be considered;
repeatable runout (RRO) and non-repeatable runout
(NRRO). While RRO is synchronous with the disk ro-
tation, NRRO is not synchronous. Although there are
many techniques to reject the RRO in low frequency
region [16], the high frequency RRO is very difficult to
be rejected by conventional technologies. However, the
effect of high-order RRO cannot be neglected since the
required servo accuracy is getting drastically severe.
Therefore, this paper applies the proposed multirate
repetitive controllers both of RIDR and RPTC with
switching mechanism.

The plant is a 2.5-in prototype HDD which is mod-
eled as double integrator system. The track pitch is
450[nm]. The sampling period of this drive is Ty =
210.08 [µs], and the control input can be changed
N = 4 times during this period. In the RIDR, it is pos-
sible to select the disturbance mode k to be rejected.
From the experimental analysis of position error signal
(PES), the low order RRO under k = 9 can be re-
jected well by the feedback controller C2[z] except for
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Figure 8: Experimental results of HDD. (Feedforward vs. Feedback Repetitive Disturbance Rejection (RDR))

the basic frequency k = 1 (70 [Hz]). However, high
order RRO has strong spectrum in k = 10 ∼ 17 (700
∼ 1190 [Hz]) since these region is over the cutoff fre-
quency of C2[z]. Therefore, the disturbance is modeled
as k = 1, 10 ∼ 17 in RIDR.

Fig. 7 shows the simulation results of RIDR and
RPTC, in which feedforward approaches are utilized
with switching scheme. The amplitude of RRO is set
to 20 [nm] for k = 1 and 6 [nm] for k = 10 ∼ 17. As
shown in Fig. 7(a) and (b), the disturbance is perfectly
rejected at every sampling point after the switching
action tsw = 30 [ms]. The disturbance rejection per-
formance of RPTC must be better than the conven-
tional repetitive controller [1] since it does not need
the low-pass filter. In spite of that, the intersam-
ple response of RIDR is much smaller than that of
RPTC. The disturbance rejection is assured only at
sampling points in RPTC because discrete-time dis-
turbance model (zNd − 1)−1 is utilized. On the other
hand in RIDR, intersample disturbance rejection of
state variable is guaranteed based on the continuous
model (14). Thus the position error and its derivative
becomes zero at M(= N/n = 4/2 = 2) intersample
points in steady-state.

Fig. 7c shows evaluated results of the error ratio E(k)
for the disturbance order k. Considering the intersam-
ple response, the error ratio is numerically calculated
in simulation by

E2(k) :=

∫ ts+kTd

ts
y(t)2dt∫ ts+kTd

ts
dy(t)2dt

, (25)

where the runout is given by dy(t) = sin kωdt, y(t)
is the position error, and ts is selected as tsw + 10
[ms] in order to evaluate the steady state. In the high
frequency region close to the Nyquist frequency (2.4
[kHz]), intersample disturbance rejection performance
of RIDR is much better than that of RPTC.

However, from the point of view of computation cost,
RPTC is superior to RIDR. Because the disturbance is
modeled as the 9 sinusoidal modes (k = 1, 10 ∼ 17)
and 1 dc mode (k = 0), the matrix Acd has one scalar
and 9 matrices of Aω ∈ R2×2 in diagonal elements as

expressed in (15). Therefore, the open-loop observer
should include this matrix in discrete-time form. Note
that exp(AcdTy) still has the diagonal structure with
many zero elements. In spite of that, computation cost
is not negligible if many modes are modeled. On the
other hand in RPTC, the periodic signal generator can
be constructed by the Nd(= 68) memories, which can
be realized just by pointer operator as show in Fig.
6. The order of inner-loop PTC described by (20) and
(21) is the same with the plant order n.

Experiments
Next, the feedback and feedforward schemes are com-

pared through experiments. As a first step of experi-
mental verification, only the basic mode k = 1 is con-
sidered. Because the 70 [Hz] is far away from the
Nyquist frequency, the single-rate control (N = 1) is
utilized for simplification. Then, the disturbance re-
jection of position error is assured at sampling points.
Both the FB (Fig. 3) and FF (Fig. 4) controllers are
designed by the algorithm of section 3.1.

As shown in Fig. 8a, the internal model of FB ap-
proach damages the sensitivity function in 120 ∼ 600
[Hz] band compared with the original lead-lag con-
troller C2[z]. Therefore, the position error of FB ap-
proach (Fig. 8c) becomes larger than that of the orig-
inal controller (Fig. 8b) in this band although the
runout is rejected at 70 [Hz] and its neighborhood. On
the other hand, FF approach with the original C2[z]
completely rejects 70 [Hz] mode as well as it does not
effect any other frequency region, as shown in Fig. 8d.
While the PES variance (±3σ) of FB approach is 1.49
[%] smaller than the original controller, FF approach
reduces 5.79 [%] position error.

4.2 Visual servoing of robot manipulator
In this section, visual servo problem is considered, in

which the camera mounted on the robot manipulator
tracks a repetitively moving object, as shown in Fig.
9 [6]. In our experimental setup, while the sampling
period of CCD camera is restricted to Ty = 100 [ms],
the joint servo period can be set to 1 [ms]. Thus the
workspace robust controller is implemented as inner-
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loop system with the short period 1 [ms]. The position
command from outer vision loop is regarded as control
input and the period is set to Tu = 25 [ms]. By using
the inverse mapping of nonlinear perspective transfor-
mation, linear diagonal plant can be obtained [6].

Both of feedforward (Fig. 4) and feedback (Fig. 3)
RIDR controllers are designed for k = 1st, 3rd, and
5th order disturbances with ωd = 2π0.5[rad/sec]. As
shown in Fig. 10a, the conventional feedback repetitive
controller becomes unstable because high-order inter-
nal model damages the stability robustness. On the
other hand, in the proposed feedforward repetitive con-
trol, the error of the image feature converges quickly
after tsw = 10[s]. Fig. 10b shows the steady-state error
of the multirate and single-rate controllers. Because
the intersample disturbance rejection is assured, the
error of multirate control is much smaller than that of
single-rate control.

5 Conclusion
In this paper, two multirate repetitive controllers of

RIDR and RPTC were proposed to reject high-order
repetitive disturbances. The advantages and disadvan-
tages of these schemes were discussed. Because RIDR
assures perfect disturbance rejection at M intersam-
ple points, the intersample performance is much better
than RPTC. On the other hand, the computation cost
of RPTC is superior to RIDR because it can be realized
by the periodic signal generator and low order perfect
tracking controller. The combination of two algorithm
will be a reasonable choice.

Moreover, the novel control schemes of repetitive con-
trol were proposed for RIDR and RPTC based on
switching mechanism and feedforward control, which

enabled to reject periodical disturbance without any
sacrifice of the feedback characteristics. The advan-
tages of these approaches were demonstrated through
simulations and experiments of HDD and visual servo-
ing.

Finally, the authors wish to thank Professor Y. Hori
of the University of Tokyo for many helpful discussions
and Dr. M. Kobayashi and Mr. A. Okuyama of Hitachi,
Ltd, for their collaboration.
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